From S-Duality To Chern-Simons Theory via Minimal-length Strings

Ori Ganor

UC Berkeley and LBNL

March 19, 2009

Dualities in Physics and Mathematics

Kavli Institute for Theoretical Physics, UCSB

Based on

- Yoon Pyo Hong and OG, "S-duality and Chern-Simons Theory," [arXiv:hep-th/0812.1213]
- Yoon Pyo Hong and OG, "From S-Daulity to Chern-Simons Theory via Minimal-length Strings," [arXiv:hep-th/0904.????]

S-duality

$$\tau \equiv \frac{4\pi i}{g_{\rm YM}^2} + \frac{\theta}{2\pi}$$

$$\mathbf{s} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$$

$$\tau \to \frac{\mathbf{a}\tau + \mathbf{b}}{\mathbf{c}\tau + \mathbf{d}}.$$

S-duality's action on states [G = U(1)]

Temporal gauge:
$$A_0 = 0$$
.

$$\widetilde{\Psi}(A) \equiv \int [\mathcal{D}\widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A})$$

$$au o rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}, \qquad E_i o \mathbf{a}E_i + \mathbf{b}B_i, \quad B_i o \mathbf{c}E_i + \mathbf{d}B_i.$$

[Lozano; Gaiotto & Witten]

$$S(A, \widetilde{A}) = \exp\left\{\frac{i}{4\pi\mathbf{c}} \int (\mathbf{d}A \wedge dA - 2\widetilde{A} \wedge dA + \mathbf{a}\widetilde{A} \wedge d\widetilde{A})\right\}.$$

$$\widetilde{E}_i \mathcal{S} = \mathcal{S}(\mathbf{a}E_i + \mathbf{b}B_i), \qquad \widetilde{B}_i \mathcal{S} = \mathcal{S}(\mathbf{c}E_i + \mathbf{d}B_i).$$

$$E_i \equiv -2\pi i \delta / \delta A_i$$

U(1) Chern-Simons from S-duality

$$\widetilde{\Psi}\{A\} \equiv \int [\mathcal{D}\widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A})$$

$$\mathcal{S}(A, \widetilde{A}) = \exp\left\{\frac{i}{4\pi\mathbf{c}} \int (\mathbf{d}A \wedge dA - 2\widetilde{A} \wedge dA + \mathbf{a}\widetilde{A} \wedge d\widetilde{A})\right\}.$$

$$A = \widetilde{A} \Longrightarrow \mathcal{I}(A) \equiv \frac{\mathbf{a} + \mathbf{d} - 2}{4\pi\mathbf{c}} \int A \wedge dA.$$

$$CS \text{ level:} \qquad k \equiv \left(\frac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}}\right).$$

What is the generalization for G = U(n)?

$$au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \Longrightarrow \mathbf{c} au + \mathbf{d} = e^{iv}.$$

At a selfdual τ we can compactify on a circle with an S-twist.

$$au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \Longrightarrow \mathbf{c} au + \mathbf{d} = e^{iv}.$$

At a selfdual τ we can compactify on a circle with an S-twist.

What is the low-energy limit?

$$au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \Longrightarrow \mathbf{c} au + \mathbf{d} = e^{iv}.$$

At a selfdual τ we can compactify on a circle with an S-twist.

What is the low-energy limit?

Topological for n < 4 (up to gravitational CS term).

$$k \equiv \left(\frac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}}\right) = \text{integer.}$$

$$au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \Longrightarrow \mathbf{c} au + \mathbf{d} = e^{iv}.$$

At a selfdual τ we can compactify on a circle with an S-twist.

What is the low-energy limit?

Topological for n < 4 (up to gravitational CS term).

$$k \equiv \left(\frac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}}\right) = \text{integer.}$$

In this talk:

- 1. Identify the Hilbert space \mathcal{H} of states on T^2 and calculate its dimension.
- 2. Identify the $SL(2,\mathbb{Z})$ (large T^2 automorphisms) action on \mathcal{H} .

The self-dual τ 's

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\tau \to -\frac{1}{\tau}$$
 $|k| = \left| \frac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}} \right| = 2$

$$\tau = i$$

$$v = \frac{\pi}{2}$$

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au o rac{ au - 1}{ au} \qquad |k| = \left| rac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}} \right| = 1$$

$$\mathbf{s} = \left(\begin{array}{cc} -1 & 1 \\ -1 & 0 \end{array} \right)$$

$$au o frac{ au - 1}{ au} \qquad |k| = 3$$

periodic time

N = 4 Super Yang-Mills

```
A_{\mu} gauge field \mu=0\ldots 3
\Phi^{I} adjoint-valued scalars I=1\ldots 6
\psi^{a}_{\alpha} adjoint-valued spinors a=1\ldots 4 and \alpha=1,2
\overline{\psi}_{a\dot{\alpha}} complex conjugate spinors a=1\ldots 4 and \dot{\alpha}=\dot{1},\dot{2}
Q_{a\alpha} SUSY generators a=1\ldots 4 and \alpha=1,2
\overline{Q}^{a}_{\dot{\alpha}} complex conjugate generators a=1\ldots 4 and \dot{\alpha}=\dot{1},\dot{2}
Z^{1}=\Phi^{1}+i\Phi^{4}, \qquad Z^{2}=\Phi^{2}+i\Phi^{5}, \qquad Z^{3}=\Phi^{3}+i\Phi^{6}.
```

Supersymmetry

$$\mathbf{s}: au
ightarrow rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \ \mathbf{s}:Q_{alpha}
ightarrow \left(rac{\mathbf{c} au + \mathbf{d}}{|\mathbf{c} au + \mathbf{d}|}
ight)^{1/2}Q_{alpha} = e^{rac{iv}{2}}Q_{alpha}$$

[Kapustin & Witten]

$$\mathbf{s} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Longrightarrow \upsilon = \frac{\pi}{2}$$

R-Symmetry

$$Spin(6) \simeq SU(4)$$

$$\gamma \equiv \begin{pmatrix} e^{i\varphi_1} & & & \\ & e^{i\varphi_2} & & \\ & & e^{i\varphi_3} & \\ & & & e^{i\varphi_4} \end{pmatrix} \in SU(4) \,, \qquad \left(\sum_a \varphi_a = 0\right) \,,$$

acts as

$$\gamma(\psi_{\alpha}^{a}) = e^{i\varphi_{a}}\psi_{\alpha}^{a}, \qquad \gamma(\overline{\psi}_{a\alpha}) = e^{-i\varphi_{a}}\overline{\psi}_{a\alpha}, \qquad a = 1...4.$$
$$\gamma(Z^{k}) = e^{i(\varphi_{k} + \varphi_{4})}Z^{k}, \qquad k = 1...3.$$

Combined R-S- action

$$Q_{a\alpha} \to e^{\frac{iv}{2} - i\varphi_a} Q_{a\alpha}$$
.
 $\Longrightarrow N = 2r$ invariant generators $r = \#\{a \text{ for which } e^{i\varphi_a} = e^{iv/2}\}$

R- and S- twisted boundary conditions

$$\xrightarrow{\gamma}$$
 \xrightarrow{x}

$$\Phi(x = 0^{-}) = \gamma[\Phi(x = 0^{+})]$$

$$Z^{k}(x=0^{-}) = e^{i(\varphi_{k}+\varphi_{4})}\Phi(x=0^{+}), \qquad k=1,2,3$$

. . .

$$\begin{array}{c}
 & t \\
\hline
\Psi(A,\dots)|_{t=0^{+}} = \int [\mathcal{D}\widetilde{A}]\mathcal{S}(A,\widetilde{A})\Psi(\widetilde{A},\dots)|_{t=0^{-}}
\end{array}$$

SUSY in 2+1D

$$\implies N = 2r, \qquad r = \#\{a \text{ for which } e^{i\varphi_a} = e^{i\upsilon/2}\}$$

$$\Longrightarrow N = 2r, \qquad r = \#\{a \text{ for which } e^{i\varphi_a} = e^{iv/2}\}$$

$$\gamma = \begin{pmatrix} e^{\frac{i}{2}v} \\ e^{\frac{i}{2}v} \\ e^{\frac{i}{2}v} \end{pmatrix} \Longrightarrow N = 6$$

$$\gamma = \text{R-symmetry twist}$$
 $e^{iv} \equiv \mathbf{c}\tau + \mathbf{d}$

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\tau \to -\frac{1}{\tau}$$

$$au
ightarrow - rac{1}{ au}$$

$$\mathbf{s}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$$

 $\gamma(\mathbf{v})$

$$N = 4 \text{ SYM}$$

$$N = 6$$
in 2+1D

IR???

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\tau = i$$

$$v = \frac{\pi}{2}$$

 $egin{aligned} \mathbf{s}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}) \ \gamma(oldsymbol{v}) \end{aligned}$

$$au
ightarrow - rac{1}{ au}$$

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

N = 4 SYM

$$\mathbf{s} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\tau \to \frac{\tau - 1}{\tau}$$

 $au
ightarrow rac{ au - 1}{ au}$

$$N = 6$$
 in 2+1D

IR???

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\tau = i$$

$$v = \frac{\pi}{2}$$

 $egin{aligned} \mathbf{s}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}) \ \gamma(oldsymbol{v}) \end{aligned}$

$$au
ightarrow - rac{1}{ au}$$

 $\tau \to -\frac{1}{\tau}$ CS at k=2?

N = 4 SYM

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au o rac{ au - 1}{ au}$$

 $\tau \to \frac{\tau-1}{\tau}$ CS at k=1?

Is there a Coulomb branch?

$$Z^{j}(x_3 + 2\pi R) = e^{iv}Z^{j}(x_3), \qquad j = 1, 2, 3 \quad \text{(the complex scalars)}$$

• for
$$\tau = i$$
 and $\mathbf{s} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $v = \frac{\pi}{2}$;

• for
$$\tau = e^{\pi i/3}$$
 and $\mathbf{s} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $v = \frac{\pi}{3}$;

• for
$$\tau = e^{\pi i/3}$$
 and $\mathbf{s} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$, $\mathbf{v} = -\frac{2\pi}{3}$;

$$\langle Z^j \rangle = e^{iv} \langle Z^j(x_3) \rangle \Longrightarrow \langle Z^j \rangle = 0.$$

Is there a Coulomb branch...?

$$\Lambda^{-1}Z^{j}(x_3 + 2\pi R)\Lambda = e^{iv}Z^{j}(x_3), \qquad \Lambda \in \text{Weyl group} = S_n \subset U(n)$$

$$\Lambda^{-1}Z^{j}(x_{3}+2\pi R)\Lambda = e^{iv}Z^{j}(x_{3}), \qquad \Lambda \in \text{Weyl group} = S_{n} \subset U(n)$$
• for $\tau = i$ and $\mathbf{s} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, v = \frac{\pi}{2};$

• for
$$\tau = e^{\pi i/3}$$
 and $\mathbf{s} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $v = \frac{\pi}{3}$;

• for
$$\tau = e^{\pi i/3}$$
 and $\mathbf{s} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$, $v = -\frac{2\pi}{3}$;

$$n < \frac{2\pi}{|v|} \Longrightarrow \langle Z^j \rangle = 0 \Longrightarrow$$
 No Coulomb branch!

String Theory

```
(N=4 SYM at selfdual \tau) on S^1 \mbox{ (direction 3)} \times M_3 \mbox{ (directions 0, 1, 2)}.
```

$$M_3 \to T^2$$
 (directions $1, 2) \times \mathbb{R}$ (directions 0)

String Theory

```
(N=4 \mbox{ SYM at selfdual } \tau) on S^1 \mbox{ (direction 3)} \times M_3 \mbox{ (directions 0, 1, 2)}.
```

$$M_3 \to T^2$$
 (directions $1, 2) \times \mathbb{R}$ (directions 0)

D3-branes in type-IIB $(\tau) \stackrel{\text{U-duality}}{\longrightarrow}$ Make S-duality geometrical.

We'll have another torus $T^2(\tau)$ instead of T^2 .

U-duality

type	brane	1	2	3	4	5	6	7	8	9	10	
IIB	D3		=	•							×	T on 1:
IIA	D2	0	=	•							×	to M:
${\bf M}$	M2	0	=	•							0	on 2:
IIA	F1	0	×	•							0	

Legend:

- \times direction doesn't exist in the theory;
- = a direction that the brane wraps;
- ÷ a direction that the brane wraps and has the S-R-twist;
- o a compact direction that the brane doesn't wrap;

Counting fixed-points

type	brane	1	2	3	4	5	6	7	8	9	10
IIB	D3		=	•							X
IIA	F1	0	×	•							0

$$\tau = i \Longrightarrow g_{\text{IIB}} = 1 \Longrightarrow R_1 = R_{10}.$$

Directions 1, 10 form a T^2 of complex structure τ ;

F1-strings are n points in directions 1, 10;

F1-strings are wound in direction 3;

 T^2 (directions 1, 10) fibered over S^1 (direction 3): Geometrical twist and wound string

 T^2 (directions 1, 10) fibered over S^1 (direction 3):

Geometrical twist and wound string Minimal energy (length) configuration: find fixed points of twist!

 T^2 (directions 1, 10) fibered over S^1 (direction 3):

Geometrical twist and wound string Minimal energy (length) configuration: find fixed points of twist!

Counting fixed-points ...

```
Directions 1, 10 form a T^2 of complex structure \tau;

F1-strings are n points in directions 1, 10;

F1-strings are wound in direction 3;

S-R-twist is entirely geometrical!

It is a rotation by v = \pi/2 of T^2;

Need to find fixed points of this rotation (up to S_n);

\{z_{\sigma(1)}, \dots, z_{\sigma(n)}\} = \{z_1, \dots, z_n\} up to \mathbb{Z} + \mathbb{Z}\tau;

One Ramond-Ramond ground state for each fixed point.
```

Number of states for U(1) $\tau = i$ (k = 2)

(rotation by $v = \pi/2$)

U(1) CS on T^2 at level k

has k independent states

 $\tau = i \Rightarrow 2$ states.

Number of states for U(1) $\tau = i\pi/3$ (k = 1)

(rotation by $v = \pi/3$)

U(1) CS on T^2 at level k has k independent states

 $v = \pi/3 \Rightarrow 1$ state.

Number of states for U(1) $\tau = i\pi/3$ (k=3)

(rotation by $v = 2\pi/3$)

U(1) CS on T^2 at level k

has k independent states

 $v = 2\pi/3 \Rightarrow 3$ state.

Counting number of ground states

(Singlet RR ground state)

Counting number of ground states

(Singlet RR ground state)

(Singlet RR ground state)
$$n = 1$$

$$n = 2$$

$$n = 3$$

$$n = 3$$

$$n = 4$$

$$n = 5$$

$$n = 6$$

$$n = 1$$

$$n = 1$$

$$n = 3$$

$$n = 3$$

$$n = 3$$

$$n = 3$$

$$n = 4$$

$$n = 5$$

$$n = 4$$

$$n = 5$$

$$n = 5$$

$$n = 5$$

<u>-</u>	Number of states for $U(n)$ on T^2								
Į.									
	au	v	k	1	2	3	4	5	
	$e^{i\pi/3}$	$\frac{\pi}{3}$	1	1	3	15	10	15	
	i	$rac{\pi}{2}$	2	2	6	12			
	$e^{i\pi/3}$	$-\frac{2\pi}{3}$	3	3	9				

					, .	0
Number	of	states	for	III	(\boldsymbol{n})) on T^2
TIGHT			101	\sim ((' ' '	, 011 1

			n				
au	v	k	1	2	3	4	5
$e^{i\pi/3}$	$\frac{\pi}{3}$	1	1	3	5	10	15
i	$\frac{\pi}{2}$	2	2	6	12		
$e^{i\pi/3}$	$-\frac{2\pi}{3}$	3	3	9			

Chern-Simons:

$$U(1)$$
 level k : $N_s = k$.

$$SU(2)$$
 level k : $N_s = k + 1$.

$$SU(3)$$
 level k: $N_s = (k+1)(k+2)/2$.

$$U(n)_k \to [U(1)_{kn} \times SU(n)_k]/\mathbb{Z}_n \to \text{multiply } N_s \text{ of } SU(n) \text{ by } k/n.$$

$\mathbb{Z}/2\mathbb{Z}$ winding number

Homology of string configuration: nx + wa, $w \in \mathbb{Z}/2\mathbb{Z}$

$$nx + wa$$
, $w \in \mathbb{Z}/2\mathbb{Z}$

For n = 1:

$$e^{i\pi \mathbf{w}}|\mathbf{o}\rangle = |\mathbf{o}\rangle, \qquad e^{i\pi \mathbf{w}}|\mathbf{o}\rangle = -|\mathbf{o}\rangle.$$

For n = 2:

$$e^{i\pi w}|_{\bullet}\rangle = |_{\bullet}\rangle, \qquad e^{i\pi w}|_{\bullet}\rangle = -|_{\bullet}\rangle, \qquad e^{i\pi w}|_{\bullet}\rangle = |_{\bullet}\rangle.$$

$$\mathbb{Z}/2\mathbb{Z}$$
 momentum
$$T^2(\tau) \longrightarrow X \qquad e^{i\pi p} = \text{translation in the fiber.}$$
 $p \in \mathbb{Z}/2\mathbb{Z}$

For n = 1:

$$e^{i\pi p}| \bigcirc \rangle = | \bigcirc \rangle, \qquad e^{i\pi p}| \bigcirc \rangle = -| \bigcirc \rangle.$$

For n=2:

$$e^{i\pi p}|_{\bullet}\rangle = |_{\bullet}\rangle, \qquad e^{i\pi p}|_{\bullet}\rangle = -|_{\bullet}\rangle, \qquad e^{i\pi p}|_{\bullet}\rangle = |_{\bullet}\rangle.$$

$$e^{i\pi \mathbf{p}}e^{i\pi \mathbf{w}} = (-1)^n e^{i\pi \mathbf{w}}e^{i\pi \mathbf{p}}$$

In n = 1 Chern-Simons theory:

$$e^{i\pi p} \longrightarrow e^{\oint_{a'} A}, \qquad e^{i\pi w} \longrightarrow e^{\oint_{b'} A}.$$

Example: results for n=2 $(\tau \rightarrow -1/\tau)$

3 single-particle states:

$$| \bullet \rangle, | \bullet \rangle, | \bullet \rangle,$$

3 two-particle states:

$$| \bigcirc \bigcirc \rangle$$
, $| \bigcirc \bigcirc \rangle$, $| \bigcirc \bigcirc \bigcirc \rangle$.

Two copies of $U(2)_2$ CS.

$$\mathcal{A} \to 0 \Longrightarrow \sigma$$
-model on \mathcal{M}_H

S-duality becomes T-duality [Harvey & Moore & Strominger; Bershadsky & Johansen & Sadov & Vafa]

Witten Index

 $\#\{\text{vacua of }2+1\text{D theory on }\mathcal{C}_h\}=I=\operatorname{tr}_0\{(-1)^F\mathcal{T}(\mathbf{s})\gamma\}.$

Hitchin's equations

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

 A_z gauge field

adj.-valued 1-form

Riemann surface

Hitchin's equations

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

 $b_{zz} = \operatorname{tr}(\phi_z^2)$ holomorphic with 4h - 4 zeroes. Space of quadratic differentials: $\mathbb{C}^{3(h-1)}$

gauge field

adj.-valued 1-form

Riemann surface

Hitchin's equations

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

 $b_{zz} = \operatorname{tr}(\phi_z^2)$ holomorphic with 4h - 4 zeroes. Space of quadratic differentials: $\mathbb{C}^{3(h-1)}$

gauge field

adj.-valued 1-form

Riemann surface

Double cover has genus 4h - 3

Prym subspace of its Jacobian: $T^{6(h-1)}$

The fiber over $b_{zz} = 0 \dots$

$$b_{zz} = \operatorname{tr}(\phi_z^2) = 0$$

Case 1: $\phi_z = 0 \Longrightarrow \mathcal{M}_{fc} = \text{moduli space of flat connections.}$

$$\underline{\text{Case 2: } \phi_z = \begin{pmatrix} 0 & \alpha_z \\ 0 & 0 \end{pmatrix}, \qquad A_{\overline{z}} = \begin{pmatrix} a_{\overline{z}} & c_{\overline{z}} \\ 0 & -a_{\overline{z}} \end{pmatrix},$$

$$a_{\overline{z}} = -\frac{1}{2} \partial_{\overline{z}} \log \alpha_z \,,$$

$$\partial_z a_{\overline{z}} - \partial_{\overline{z}} a_z = |\alpha_z|^2 + |c_{\overline{z}}|^2$$
, and $\frac{c_{\overline{z}}^*}{\alpha_z} = \text{holomorphic.}$

Special subcase of 2: $c_{\overline{z}} = 0$.

The fiber over $b_{zz} = 0 \dots$

$$b_{zz} = \operatorname{tr}(\phi_z^2) = 0$$

Case 1: $\phi_z = 0 \Longrightarrow \mathcal{M}_{fc} = \text{moduli space of flat connections.}$

$$\underline{\text{Case 2: } \phi_z = \begin{pmatrix} 0 & \alpha_z \\ 0 & 0 \end{pmatrix}, \qquad A_{\overline{z}} = \begin{pmatrix} a_{\overline{z}} & c_{\overline{z}} \\ 0 & -a_{\overline{z}} \end{pmatrix},$$

$$a_{\overline{z}} = -\frac{1}{2} \partial_{\overline{z}} \log \alpha_z ,$$

$$\partial_z a_{\overline{z}} - \partial_{\overline{z}} a_z = |\alpha_z|^2 + |c_{\overline{z}}|^2$$
, and $\frac{c_{\overline{z}}^*}{\alpha_z} = \text{holomorphic.}$

Special subcase of 2: $c_{\overline{z}} = 0$.

if also genus h = 2: α_z has a single simple zero on \mathcal{C}_2 which determines the solution uniquely up to gauge.

T-duality and Geometric Quantization

1+1D σ -model with target space X

T = T-duality (mirror symmetry) twist $\gamma = \text{some isometry twist}$

IR?

Geometric quantization on γ -invariant subspace???

[cf. Gukov & Witten]

Conclusions

- Compactification of N=4 U(n) SYM on S^1 with an S-duality twist, at a self-dual τ seems to give a topological 2+1D QFT in IR for n sufficiently small;
- Number of (ground) states on T^2 can be computed by string dualities;
- Number of (ground) states on C_h (h > 1) could be computed if we could determine the signs in the action of S-duality on $H^*(\mathcal{M}_H)$;

Open questions

- What is this topological 2+1D theory?
- Wilson lines?
- $n \ge 4$ and ABJM theory?
- Mirror symmetry twist and geometric quantization?
- Nonlocal topological structure from the kernel $S(A, A_D)$?
- Can we extract any new clues about S-duality from this?

